Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts
نویسندگان
چکیده
Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for nanoelectrical application, because of its direct-band-gap nature. For the first time, we report on robust BP@TiO2 hybrid photocatalysts offering enhanced photocatalytic performance under light irradiation in environmental and biomedical fields, with negligible affected on temperature and pH conditions, as compared with MoS2@TiO2 prepared by the identical synthesis method. Remarkably, in contrast to pure few layered BP, which, due to its intrinsic sensitivity to oxygen and humidity was readily dissolved after just several uses, the BP@TiO2 hybrid photocatalysts showed a ~92% photocatalytic activity after 15 runs. Thus, metal-oxide-stabilized BP photocatalysts can be practically applied as a promising alternative to graphene and MoS2.
منابع مشابه
Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol
Neodymium enriched TiO2 anatase-brookite powders were prepared by unconventional method via using pressurized hot fluids for TiO2 crystallization and purification. The photocatalysts were tested in the CH3OH photocatalytic decomposition and they were characterized with respect to the textural (nitrogen adsorption), structural (XRD, XPS, and Raman spectroscopies), chemical (XRF), and optical (DR...
متن کاملHydrogen Reduced Rutile Titanium Dioxide Photocatalyst
For TiO2 photocatalysts, recombination of photoexcited electrons and holes would occur in crystalline defects such as oxygen vacancies, Ti ions, and surface states. Therefore, it is believed that the density of crystalline defects should be decreased to improve the photocatalytic activity of TiO2 particles. Contrary to this common knowledge, the introduction of crystalline defects by hydrogen r...
متن کاملIron doped TiO2 photocatalysts for environmental applications: fundamentals and progress
Many recent studies have been reported on the photodegradation of the organic compounds in industrial wastewater in the presence of TiO2 semiconductor as photocatalyst. Heterogeneous photocatalysts using Iron as a dopant metal, so far, have been reported for various environmental applications. This paper highlights the recent advances and applications of Fe-TiO2 photocatalysis for the degradati...
متن کاملPhotocatalytic Reduction of CO2 to Formaldehyde: Role of Heterogeneous Photocatalytic Reactions in Origin of Life Hypothesis
Photocatalytic reduction of carbon dioxide to formaldehyde was investigated on four semiconductor photocatalysts (FeS, FeS/FeS2, NiO and TiO2). The reaction was carried out in continues flow of CO2 gas bubbled into the reactor. Semiconductor photocatalysts were characterized by X-Ray diffraction (XRD) and Diffuse Reflectance Spectroscopic (DRS) methods. Sulfide ion was used as hole scavenger. T...
متن کاملAtomic Level In-situ Characterization of NiO-TiO2 Photocatalysts under Light Irradiation in Water Vapor
Photocatalysts are important for environmental cleanup of undesirable organic compounds and have potential applications for solar fuel generation either through water splitting or CO2 reduction [1]. It is now recognized that atomic level in-situ observations of catalytic materials are critical for understanding the structure-reactivity in catalysts. For photocatalysts, this requires that the sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015